TABLE 3. Continued

Samp1e	Composition	Crystal Direction	Pressure, kb	Temperature Range, 10 ⁴ /T (°K) ⁻¹	$\log \sigma_x$	A/k	Stand. Deviation	A_{x} , ev
St. John's Island	Fa 9.4			E				192
35*		(010)	7.50	15 to 11	-0.6245	0.6097	0.01383	1.2097
35*		(010)	5.00	15 to 11	-1.471	0.5405	0.01383	1.0724
35*		(010)	2.50	15 to 7.3	-1.859	0.4986	0.02002	0.9893
35*		(010)	2.50	7.05 to 6.9	+20.056	3.587	2 points only	7.117
Crater Elegante	Fa 26.4							
36*			7.50	20 to 11	-0.1012	0.3855	0.000410	0 5040
36*			5.0	21 to 12	-0.3204	0.3518	0.009410	0.7649
36*		X	2.5	21 to 10	-0.5887	0.3349	0.008379 0.01016	0.6980
Synthetic	Fa 0							
38*		i i	7.5	9.5 to 7.2	-0.7139	0.8573	0.01300	1 701
38*			5.0	10.1 to 7.3	-1.810	0.7165	0.01300	1.701
38*			2.5	10.0 to 7.5	-2.932	0.7103	0.03838	1.422
38*§			2.5	7.15 to 6.8	+21.972	4.0284	0.23937	1.150 7.993

^{*}Data used in Figure 6. †Experiment repeated 2 weeks later to check reproducibility. §Three data points used in this calculation.

TABLE 4. Results of Spectrographic, Electron-Microprobe, and Wet Chemical Analyses of Olivine Samples (Composition of synthetic forsterite given in Table 1.)

Oxide	Wet Chem	ical Analyse	Crater Elegante Microprobe Analysis,	
	San Carlos*	Red Seat	Mt. Leura§	wt %
SiO ₂	40.7	40.5	41.0	37.8
$A1_{2}\bar{0}_{3}$	0.2	0.3	0.1	<0.2
Cr_2O_3	0.05	0.00x	0.02	
Fe_2O_3	0.41		0.34	} 24.2
Fe0	7.94	9.16	7.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
MnO	0.12	0.14	0.11	<0.2
MgO	50.1	49.3	50.7	37.7
CoO	0.02	0.01	0.01	
NiO	0.38	0.38	0.34	<0.2
Cu0	0.02	0.00x	0.01	
Ca0	0.07	0.01	0.04	<0.1
ZnO	0.01	0.005	0.01	
Na ₂ O	0.01	0.02	0.01	
K20	0.00	0.01	0.00	
Total	100.03	99.83	100.19	

*8.2 mole % fayalite; spectrographic trace elements Ti, Ba, Be, Sc. +9.4 mole % fayalite; spectrographic trace elements Ti, Ba, Ag, Sc. \$7.7 mole % fayalite; spectrographic trace elements Ti, Ba, Ag, Sc. ¶26.4 mole % fayalite; spectrographic trace elements Ti, Ba, Ag, Sc. | Present but small (≤0.2%).

500° and 1100°C in the Fa 9.4 and between 700° and 1100°C in the Fa 0 indicate that only one σ mechanism is operating in these olivines in these temperature regions. It is possible that some other σ mechanism is effective at lower temperatures, but the larger leakage conductance of the sample holder masks these regions. Above about 1150°C the two olivines exhibit a large reversible increase in σ. Because of the deterioration of the chromel-alumel thermocouple, the data were collected over a small region of reciprocal temperature space and are of poor precision. However, despite large differences in initial conductivity, both samples indicate an A_x of 7-8 ev and a σ_x of 10^{21} - 10^{22} . Although the poor precision does not allow more than a qualitative assessment of the nature of the difference in A_x , it would appear that the synthetic Fa 0 requires the larger A_x (8 ev) vis a vis the Fa 9.4 (7.1 ev).

Table 3 summarizes the coefficients and stand-

ard deviations of the linear-regression analysis of the data for various compositions, pressures, crystal directions, and temperature ranges. For the linear-regression analysis $\log \sigma$ was treated as the dependent variable, and $10^4/T$ (°K)-1 was treated as the independent variable. Log σ_x is the log pre-exponential term of (1) and is negative for all samples studied, except samples 38 and 35 from the high-temperature region, where $\log \sigma_x$ is 22 and 21, respectively. The term A_x/k from (1) is the slope of this 'best-fit' line, and from this term the activation energy E may be calculated. However, A_x is listed in Table 3 because its use involves no interpretation of conduction mode, as would a listing of activation energies.

Figure 3 compares the data of Figure 2 with available literature data for single crystals of olivine. With the notable exceptions of the Red Sea peridot, Sado olivine, and synthetic forsterite, there is a wide band of agreement, within